Molecular Dynamics Simulations of Protein Adsorption at Interfaces
نویسنده
چکیده
Proteins can often adsorb irreversibly at fluid/fluid interfaces; the understanding of the adsorption mechanism has relevance across a variety of industrial (e.g. the creation of stable emulsions) and biological (e.g. biofilm formation) processes. I performed molecular dynamics simulations of two surfactant proteins as they interact with air/water and oil/water interfaces, describing the origin of the surface activity, the adsorption dynamics and the conformational changes that these proteins undergo at the interface. BslA is an amphiphilic protein that forms a highly hydrophobic coat around B. subtilis biofilms, shielding the bacterial community from an external aqueous solution. By investigating the behaviour of BslA variants at oil/water interfaces via coarse-grained molecular dynamics, I show that BslA represents a biological example of an ellipsoidal Janus nanoparticle, whose surface interactions are controlled by a local conformational change. All-atom molecular dynamics simulations then reveal the details of the conformational change of the protein upon adsorption, and the self-assembly into a two-dimensional interfacial crystal. Ranaspumin-2 is one of the main components of the tungara frog foam nest. Contrary to most surfactant proteins, its structure lacks any sign of amphiphilicity. All-atom simulations show that the adsorption proceeds via a two-step mechanism where firstly the protein binds to the interface through its flexible N-terminal tail and then it undergoes a large conformational change in which the hydrophobic core becomes exposed to the oil phase. I then developed a simple structure-based coarse-grained model that highlights the same adsorption mechanism observed in all-atom simulations, and I used it to compare the dynamics of adsorption and the underlying free energy landscape of several mutants. These results agree with and are used to rationalise the observations from Langmuir trough and pendant drop experiments.
منابع مشابه
Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملMolecular dynamics studies of straight-chain alkanes diffusion in SiO2 ceramic versus Bosanquet formula
Molecular Dynamics (MD) simulations were applied to calculate self-diffusion coefficients (Di ) and heats of adsorption for ethane, propane and n-butane. The simulations were done in temperature range of 300-525 K for various concentrations inside the pores of silicalite type zeolite. The calculated values of self-diffusion coefficients and heats of adsorption resulted from the current wo...
متن کاملAdsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface.
As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applic...
متن کاملMolecular-dynamics simulations of interfaces between water and crystalline urea
Molecular-dynamics simulations of several water-crystalline urea interfaces have been performed. The structure and dynamics of water close to the urea crystal surface are discussed in terms of density profiles, positional and orientational distribution functions, and diffusion coefficients. The water structure close to the interface is strongly determined by the structure of the crystal surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016